Artificial Neural Networks in Prediction of Patient Survival after Liver Transplantation
نویسندگان
چکیده
Predicting the survival of patients after liver transplantation is one of the challenging areas in the field of medicine. The ultimate curative treatment for the last stage liver disease is the liver transplantation. While going for any transplantation, everybody will think about the survival. This paper summarizes the prediction of survival of patients undergoing liver transplantation in both computing and clinical manner. We proposed an Artificial Neural Network model to define three month mortality of patients after liver transplantation using United Network for Organ Sharing dataset. We trained the data using Multilayer Perceptron Artificial Neural Network model using 10 fold cross validation and achieved an accuracy of 99.74%. The comparison of our model was done with other Artificial Neural Network models with the help of various performance error measures. In order to ensure accuracy produced by the model, we also made comparison with existing models in the prediction of survival of patients after liver transplantation.
منابع مشابه
پیشبینی بقای پنج ساله پیوند کلیه با استفاده از مدل شبکه عصبی مصنوعی: گزارش 22 سال پیگیری از 316 بیمار در اصفهان
Background: Kidney transplantation had been evaluated in some researches in Iran mainly with clinical approach. In this research we evaluated graft survival in kidney recipients and factors impacting on survival rate. Artificial neural networks have a good ability in modeling complex relationships, so we used this ability to demonstrate a model for prediction of 5yr graft survival after ki...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016